ResiDNA Precise Quantitative CHO DNA Detection Kit

RD102

Instruction for Use Version 23.1

Contents

01/Product Description	
02/Components	
03/Storage	
04/Application	
05/Applicable Instruments	
06/Notes ·····	
07/Experiment Process ·····	
08/FAQ & Troubleshooting ·····	

01/Product Description

ResiDNA Precise Quantitative CHO DNA Detection Kit is a probe-based qPCR kit that quantitatively detects residual genomic DNA from CHO host cells. This kit is applicable for the detection of residual CHO DNA in the intermediate, semi-finished and finished products of various biological products and pharmaceuticals. It contains CHO DNA quantitative reference material (CHO DNA Template, 30 ng/µl), which has the characteristics of strong specificity, high sensitivity (detection of fg/µl level), rapid detection, good stability and convenient operation. This kit can be used with ResiDNA Hunter Residual DNA Sample Preparation Kit (Vazyme #RD101) for accurate detection of residual DNA in CHO host cells.

02/Components

Components	RD102-01 (100 rxns)
2 × CHO qPCR Mix ^a	2 × 750 µl
10 × CHO Primer & Probe Mix	300 µl
CHO DNA Template (30 ng/µl)	40 µl
DNA Dilution Buffer	7 × 1 ml
Negative Control	1 ml

a. It contains dNTP Mix, Mg²⁺, hot-start Taq DNA polymerase, universal reference dye, etc. This component needs to be protected from light after unpacking.

03/Storage

Store at -30 ~ -15℃ and transport ≤0℃.

04/Application

It is applicable for the detection of residual CHO DNA in biological products expressed from CHO cells.

05/Applicable Instruments

Including but not limited to:

ABI QuantStudio 3, ABI QuantStudio 5, ABI 7500, ABI StepOnePlus, Bio-Rad CFX 96, Roche LightCycler 96, Bioer Linegene 9600.

06/Notes

For research use only. Not for use in diagnostic procedures.

07/Experiment Process

- Dilution and standard curve preparation of CHO DNA Template (30 ng/μl) Use the DNA Dilution Buffer provided in the kit to carry out serial dilutions of CHO DNA Template, the concentrations are 300 pg/μl, 30 pg/μl, 3 pg/μl, 300 fg/μl, 30 fg/μl and 3 fg/μl. The detailed steps are as follows:
 - a. Thaw CHO DNA Template (30 ng/µl) and DNA Dilution Buffer on ice, and then mix gently. Centrifuge for 5 sec.
 - b. Dilute CHO DNA Template (30 ng/µl) in 1.5 ml Nuclease-free centrifuge tubes according to Table 1 and mark them as SD 1, SD 2, SD 3, SD 4, SD 5, SD 6.
 - c. Mix CHO DNA Template (30 ng/µl) and DNA Dilution Buffer thoroughly. Vortex for 30 sec, and then centrifuge for 10 sec.

Tube	Dilution	Final concentration
SD 1	10 µl CHO DNA Template + 990 µl DNA Dilution Buffer	300 pg/µl
SD 2	50 µl SD 1 + 450 µl DNA Dilution Buffer	30 pg/µl
SD 3	50 µl SD 2 + 450 µl DNA Dilution Buffer	3 pg/µl
SD 4	50 µl SD 3 + 450 µl DNA Dilution Buffer	300 fg/µl
SD 5	50 µl SD 4 + 450 µl DNA Dilution Buffer	30 fg/µl
SD 6	50 μl SD 5 + 450 μl DNA Dilution Buffer	3 fg/µl

Table 1. Serial Dilutions of CHO DNA Template

▲ The linear range of the standard curve can be adjusted according to the needs, and the recommended range is 3 fg/µl - 300 pg/µl.

- ▲ Diluted SD 1 can be stored at -20°C for 6 months, and SD 2 SD 6 can be stored at -20°C for 1 week;
- Pay attention to the accuracy of volume during serial dilution. Vortex for 30 sec to ensure that the template is mixed thoroughly and exhibits a good linear relationship.

2. Preparation of Extraction Recovery Control (ERC)

Set the CHO DNA loading concentration in the ERC as needed. Take the preparation of ERC with 3 pg CHO DNA as an example:

- Add 100 µl of the sample to be tested into a 1.5 ml Nuclease-free centrifuge tube. Add 10 µl SD 4, mix thoroughly, and mark it as ERC.
- b. Perform sample pretreatment on ERC and the same batch of samples to be tested to prepare ERC purified solution.

3. Preparation of Negative Extraction Control (NC)

- a. Add 100 μl of sample dilution buffer into a 1.5 ml Nuclease-free centrifuge tube and mark it as NC.
- b. Perform sample pretreatment on NC and the same batch of samples to be tested to prepare NC purified solution.

4. Prepare the following mixture in a qPCR tube:

Components	Volume	
2 × CHO qPCR Mix	15 µl	
10 × CHO Primer & Probe Mix	3 µl	
Negative Control	2 µl	
DNA Template ^a	10 µl	
Total	30 µl	

a. DNA Template includes standard curve (SD 1 - SD 6), NTC (Negative Control), NC (Sample Dilution Buffer), ERC purified solution and samples to be tested;

▲ Vortex the mixture to mix thoroughly, remove air bubbles, then centrifuge it briefly to the bottom of the tube.

5. Reaction Program

Stage 1	Initial Denaturation	Rep: 1	95℃	10 min
Stage 2	Cycling Reaction	Dama: 40	95℃	15 sec
		Reps: 40	℃00	1 min*

*Acquisition of FAM channel signal.

- 6. Data calculation and analysis (Using ABI QuantStudio 3)
 - a. Use the default baseline and threshold. Export the data and calculate average C_T values. The following table is obtained:

Gradient	C (pg/µl)	Log C	Avg. C _T	$ riangle \mathbf{C}_{T}$
SD 1	300	2.47712125	15.267	_
SD 2	30	1.47712125	18.634	3.37
SD 3	3	0.47712125	21.973	3.34
SD 4	0.3	-0.52287875	25.307	3.33
SD 5	0.03	-1.52287875	28.754	3.45
SD 6	0.003	-2.52287875	32.089	3.34

Table 2. The average C_T values of SD 1 - SD 6

 \blacktriangle $\bigtriangleup C_{T}$ should be between 3.1 - 3.6

b. Draw a standard curve using Log C and the average C_T value:

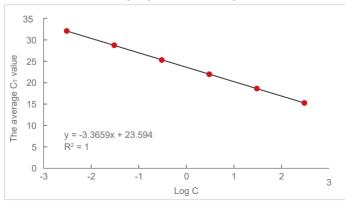


Fig 1. Standard curve

c. Concentration of the sample to be tested:

Substitute the average C_T value of the sample to be tested into the standard curve to obtain Log C (to be tested), then the concentration of the sample to be tested can be calculated.

08/FAQ & Troubleshooting

- \diamond Amplification efficiency deviates from the range of 90% 110%
- (1) It indicates that the reaction system may be contaminated, if C_T(NTC) C_T(SD 6) <3 or C_T(SD 6) C_T(SD 5) <3.1 and the calculated amplification efficiency exceeds 100%. It is recommended to confirm effective C_T values according to C_T(NTC), discard contaminated C_T values, and then draw a standard curve.
- O The incorrect setting of baseline baseline will increase the C_T(SD 1) value, thereby affecting the calculation of amplification efficiency. Manually adjust the baseline to 1 3 cycles.
- ③ Inaccurate pipetting volume.

♦ R²<0.99

- ① Inaccurate pipetting volume.
- ② All reagents should be fully thawed and mixed thoroughly before use.
- ♦ Uneven distribution of standard amplification curve
- ① C_T(SD 2) C_T(SD 1) <3.1 indicates that the baseline is not set correctly. Manually adjust the baseline to 1 - 3 cycles.
- $\bigcirc \ \ \bigtriangleup C_T > 3.6$ between SD 1 and SD 6 indicates low amplification efficiency. Make sure that all reagents are fully thawed and mixed thoroughly before use.
- ③ Confirm that all component concentrations and reaction program are correct.

♦ Abnormal shape of amplification plot

- ① Rough amplification plot: The signal is too weak and generated after system correction. Increase template concentration and retry.
- O Broken or downward amplification plot: The template concentration is too high and the baseline endpoint is greater than C_T value. Reduce the baseline endpoint (C_T value 4) and repeat data analysis.
- ③ Amplification plot goes downward suddenly: There are bubbles remaining in the reaction tube. Pay attention to centrifugation when processing samples and carefully check the reaction tube for any remaining bubbles before performing reaction.
- ♦ Amplification observed in negative control
- ① Reaction system contamination: Replace with new mix, ddH₂O and primers to repeat the experiment. The reaction system should be prepared in clean bench to reduce aerosol contamination.

- ♦ Standard curve linearity is poor for absolute quantification
- ① CHO DNA Template degradation: Prepare the CHO DNA Template again and repeat the test.

Nanjing Vazyme Biotech Co.,Ltd.

Tel: +86 25-83772625 Email: info.biotech@vazyme.com Web: www.vazyme.com Loc: Red Maple Hi-tech Industry Park, Nanjing, PRC Follow Us

