Murine RNase Inhibitor (Glycerol-free)

Version 23.1

Product Description

Murine RNase Inhibitor (Glycerol-free) is a lyophilizable version of Murine RNase Inhibitor (Vazyme #R301) with excellent thermal stability and storage stability in the glycerol-free state. Compared to the Human RNase Inhibitor, the Murine RNase Inhibitor does not contain oxidation-sensitive cysteines. The superior antioxidant activity makes Murine RNase Inhibitor (Glycerol-free) suitable for experiments (e.g. qPCR assays) that are sensitive to reducing agents. This product does not contain excipients, please add your own as needed.

Components

Components	RL301-01	RL301-02	RL301-03
	(2,000 U)	(10,000 U)	(20,000 U)
■ Murine RNase Inhibitor (Glycerol-free) (40 U/µI)	50 μΙ	250 μΙ	500 µl

Storage

Store at -30 ~ -15°C and transport at ≤0°C.

Applications

- ♦ It is applicable for any experiment where RNase interference may exist to avoid RNA degradation, such as:
 - 1. First-strand cDNA synthesis (RT-PCR and RT-qPCR systems).
 - 2. Protection of RNA in in vitro transcription/translation (e.g. virus in vitro replication system).
 - 3. RNase protection assays.
- ♦ It does not interfere with other commonly used enzymes in RNA preparation or analytical applications.

Source

A recombinant E. coli strain carrying modified RNase Inhibitor gene cloned from mice.

Unit Definition

- 1. One unit (U) is defined as the enzyme needed for inhibiting 50% activity of 5 ng RNase A.
- 2. The activity of RNase A is detected by quantifying the inhibition of hydrolysis from Cyclic 2', 3'-CMP to 3'-CMP.

Notes

For research use only. Not for use in diagnostic procedures.

- 1. Active temperature is 25 ~ 55°C, inactivated at 65°C and above.
- 2. The pH range of inhibiting RNase activity is 5.0 9.0, and 7.0 8.0 performs best.
- 3. Foaming or Vortex can cause inactivation.
- 4. It does not inhibit RNase H activity or RNase T1 activity.

Experiment Process

Take Reverse Transcription as the example

1. Mix the following components in an RNase-free centrifuge tube:

Components	Volume
RNase-free ddH ₂ O	to 20 µl
5 × HiScript II Buffer	4 μΙ
Oligo (dT) ₂₃ VN (50 μM)	1 μΙ
dNTP Mix (10 mM each)	1 μΙ
Murine RNase Inhibitor (Glycerol-free) (40 U/µI)	1 μl 🔳
HiScript II Reverse Transcriptase (Glycerol-free) (200 U/μl)	1 μΙ
Template RNA	10 pg - 2.5 μg

- 2. Mix gently.
- 3. 50°C 45 min, 85°C 2 min.
- 4. Store the obtained product at -20°C.