

3-Phosphoglycerate Kinase Microplate Assay Kit

Cat #: orb1881041 (manual)

Detection and Quantification of 3-Phosphoglycerate Kinase (PGK)Activity in Serum, Plasma, Tissue extracts, Cell lysate, Cell culture media, Other biological fluids Samples.

For research use only. Not for diagnostic or therapeutic procedures.

INTRODUCTION

3-Phosphoglycerate kinase (EC 2.7.2.3) (PGK) is an enzyme that catalyzes the reversible transfer of a phosphate group from 1,3-bisphosphoglycerate (1,3-BPG) to ADP producing 3-phosphoglycerate (3-PG) and ATP. Like all kinases it is a transferase. PGK is a major enzyme used in glycolysis, in the first ATP-generating step of the glycolytic pathway. In gluconeogenesis, the reaction catalyzed by PGK proceeds in the opposite direction, generating ADP and 1,3-BPG.

3-Phosphoglycerate Kinase Microplate Assay Kit provides a simple and sensitive method for monitoring 3-Phosphoglycerate Kinase activity in various samples. In this assay, 3-Phosphoglycerate Kinase catalyzes conversion of 3-phosphoglycerate to

1,3-diphosphoglycerate and an intermediate, which reacts with a developer to form a colored product that absorbs maximally at 492 nm.

orb1881041

Explore. Bioreagents.

KIT COMPONENTS

Component	Volume	Storage
96-Well Microplate	1 plate	
Assay Buffer	30 mlx 4	4 °C
Reaction Buffer	10 mlx 1	4 °C
Substrate	Powder x 1	-20 °C
Enzyme	Powder x 1	-20 °C
Dye ReagentA	Powder x 1	4 °C
Dye Reagent B	1 ml x 1	4 °C
Standard	Powder x 1	-20 °C
Positive Control	100 µlx 1	4 °C
Plate Adhesive Strips	3 Strips	
Technical Manual	1 Manual	

Note:

Substrate: add 1 ml Reaction Buffer to dissolve before use, store at 4°C for 1-2weeks after reconstitution.

Enzyme: add 1 ml Reaction Buffer to dissolve before use, store at -80°C for 1 month after reconstitution.

Dye Reagent A: add 9 ml distilled water to dissolve before use, mix, store at 4°C for 1 month after reconstitution.

Standard: add 1 ml distilled water to dissolve before use; then add 0.15 ml into 0.85 ml distilled water, the concentration will be 300 μ mol/L, store at 4°C for 1-2 weeks after reconstitution.

MATERIALS REQUIRED BUT NOT PROVIDED

- 1. Microplate reader to read absorbance at 525 nm
- 2. Distilled water
- 3. Pipettor, multi-channel pipettor
- 4. Pipette tips
- 5. Mortar
- 6. Centrifuge
- 7. Timer

SAMPLE PREPARATION

1. For cell and bacteria samples

www.biorbyt.com

Explore. Bioreagents.

Collect cell or bacteria into centrifuge tube, discard the supernatant after centrifugation, add 1 mlAssay Buffer for 5×10^6 cell or bacteria, sonicate (with power 20%, sonicate 3s, interval 10s,repeat 30 times); centrifuged at 8000g 4°C for 10minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection.

2. For tissue samples

Weigh out 0.1 g tissue, homogenize with 1 ml Assay Buffer on ice, centrifuged at 8000g 4°C for 10minutes, take the supernatant into a new centrifuge tube and keep it on ice for detection.

3. For serum or plasma samples

Detect directly.

ASSAY PROCEDURE

Warm the all reagents to room temperature before use.

Add following reagents into the microplate:

Reagent	Sample	Control	Standard	Blank	Positive Control	
Reaction Buffer	70 µl	70 µl			70 µl	
Coenzyme	10 µl	10 µl			10 µl	
Substrate	10 µl	10 µl			10 µl	
Sample	10 µl					
Positive Control					10 µl	
Standard			100 µl			
Distilled water		10 µl		100 µl		
Dye Reagent A	90 µl	90 µl	90 µl	90 µl	90 µl	
Dye Reagent B	10 µl	10 µl	10 µl	10 µl	10 µl	
Mix, cover the plate adhesive strip, put the plate into the convection oven, incubate at 37 °C for 5 minutes, measured at 492 nm and record the absorbance.						

Note:

- 1) Perform 2-fold serial dilutions of the top standards to make the standard curve.
- 2) For unknown samples, we recommend doing a pilot experiment & testing several doses to ensure the readings are within the standard curve range. If the enzyme activity is lower, please add more sample into the reaction system; or increase the reaction time; if the enzyme activity is higher, please dilute the sample, or decrease the reaction time.
- 3) Reagents must be added step by step, can not be mixed and added together.

www.biorbyt.com

Explore. Bioreagents.

CALCULATION

Unit Definition: one unit of PGK activity is defined as the enzyme oxidize 1nmolNADH per minute.

1. According to the protein concentration of sample

 $PGK (U/mg) = (C_{Standard} \times V_{Standard}) \times (OD_{Control} - OD_{Sample}) / (OD_{Standard} - OD_{Blank}) / (V_{Sample} \times C_{Protein}) / T_{Standard} - OD_{Standard} - OD_{S$

=
$$600 \times (OD_{Control} - OD_{Sample}) / (OD_{Standard} - OD_{Blank}) / C_{Protein}$$

2. According to the weight of sample

$$\begin{split} PGK(U/g) = & (C_{Standard} \times V_{Standard}) \times (OD_{Control} - OD_{Sample}) / (OD_{Standard} - OD_{Blank}) / (V_{Sample} \times W / V_{Assay}) / T \\ &= & 600 \times (OD_{Control} - OD_{Sample}) / (OD_{Standard} - OD_{Blank}) / W \end{split}$$

3. According to the quantity of cells or bacteria

 $PGK (U/10^{4}) = (C_{Standard} \times V_{Standard}) \times (OD_{Control} - OD_{Sample}) / (OD_{Standard} - OD_{Blank}) (V_{Sample} \times N / V_{Assay}) / T = (V_{Standard} \times V_{Standard}) \times (OD_{Control} - OD_{Sample}) / (OD_{Standard} - OD_{Blank}) (V_{Sample} \times N / V_{Assay}) / T = (V_{Standard} \times V_{Standard}) \times (OD_{Control} - OD_{Sample}) / (OD_{Standard} - OD_{Blank}) (V_{Sample} \times N / V_{Assay}) / T = (V_{Standard} \times V_{Standard}) \times (OD_{Control} - OD_{Sample}) / (OD_{Standard} - OD_{Blank}) (V_{Sample} \times N / V_{Assay}) / T = (V_{Standard} \times V_{Standard}) \times (OD_{Control} - OD_{Sample}) / (OD_{Standard} - OD_{Standard}) \times (V_{Sample} \times N / V_{Assay}) / T = (V_{Standard} \times V_{Standard}) \times (V_{Standard} \times V_{Standard} \times V_{Standard$

4. According to the volume of sample

 $PGK (U/ml) = (C_{Standard} \times V_{Standard}) \times (OD_{Control} - OD_{Sample}) / (OD_{Standard} - OD_{Blank}) / V_{Sample} / T$

= $600 \times (OD_{Control} - OD_{Sample})/(OD_{Standard} - OD_{Blank})$

 $C_{Standard}$: the standard concentration, 600 µmol/L = 600 nmol/ml;

 V_{Standard} : the volume of standard, 100 µl = 0.1 ml;

C_{Protein}: the protein concentration, mg/ml;

W: the weight of sample, g;

N: the quantity of cell or bacteria, $N \times 10^4$;

V_{Sample}: the volume of sample, 0.01 ml;

V_{Assay}: the volume of Assay buffer, 1 ml;

T: the reaction time, 5 minutes.

TYPICAL DATA

The standard curve is for demonstration only. A standard curve must be run with each assay.

Explore. Bioreagents.

Detection Range: 3 µmol/L - 300 µmol/L

Positive Control reaction in 96-well plate assay with decreasing the concentration

Biorbyt Ltd